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Iowa State University Engineering Research Institute Project 911-S is

a continuation of NASA Grant NGRIG-002-029. The major areas uf study and

goals of this research project are:

i) Determine the flow field generated by a finitely thick lifting

three-dimensional wing with subsonic tips moving at supersonic

speeds.

2) Determine the flow field produced by a lifting elliptic cone

using finite difference techniques.

3) Study the problem of cross-flow instability associated with lift-

ing delta wing configurations such as space shuttle.

A six month extension of the current grant through December 1972 has

been obtained in order to complete the first objective of the research project.

Results obtained during the past year are presented throuBh theses or reports

where applicable.



I. Rectangular Wing Problem

The flow field associated with the forebody region of the syr_netri_

rectangular wing has been determined for angles-of-attack of 0 and 4

degrees at a Mach number of 2. The original solution technique has been

modified to include the entropy boundary conditions developed by Mike

Abbett, thus replacing the reflection technique in the evaluation of

the ultimate body values of the flow variables. Although the application

of the boundary conditions as described by Abbett failed to yield a

viable solution in the cone region (the wedge region solution was satisfactory)

a suitable modification was made that did work. It would appear that in

regions of small radius of curvature (in the cone-tip region) the predict_l

values of the velocity components on the body are not sufficiently accurate

to use as inputs for the Abbett technique which would continuously expand

the flow on the body. The modification consisted of using corrected body

data obtained via reflection as inputs to the Abbett technique.

The flow field associated with the afterbody region of the rectangular

wind is currently being developed. The forebody flow field data is transferred

to the afterbody grid system at the wind mldchord point, thus generatit_g

initial dat_ for the afterbody. The integration technique and boundary

conditions used are the same as for the forebody. To dete, the integration

has proceeded to a point approximately 90% of the distance back on the

afterbody. In this region of the flow field on the body the cross flow

eigenvalue_ grow rapidly as the trailing edge is encountered forcing the

integration step size to be continuously decreased. Since the normal

elgenvalues do not change appreciably along the afterbody the effective

Courant number at which the solution is being obtained in the normal

direction continuously decreases yielding a suboptimal solution in the

normal direction in the region near the trailing edge of the wln_. The

situation has been improved somewhat by decreasing the number of grid

points about the cone tip. It would appear that the afterbody solutions

will be completed in the very near future.
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The afterbody solutions will be used as initial data for the wake

region integration. No problems are anticipated in the wake integration

which should be completed shortly after the afterbody integration is

furnished.

2) Elliptic Cone Flow Fields

Appendix A includes the thesis "Finit difference solutions to the

equations of fluid flow around an elliptic cone" by Phil Pratt. This serv-

ed as Phil's M.S. thesis and deals with the second part of the current effort.

The results presented compare favorably with both e_perimental and ana-

lytical data available. The only question arises when one notes the persistent

osc_illation in body pressure which occurs approximately 115 ° around the ellip-

tic cones both at zero and non-zero angles of attack. This question should

have been answered by a more complete investigation. However, the fu_ds avail-

able for computer time and the time requirements precluded further investigation.

Since Pratt's work was completed, a new program has been wrltten for solving

the elliptic cone flow field. This has been done at the direction of the NASA

Technical Monitor Dr. Kutler and will be used both in further studies of the

elliptic cone and the cross-flow instability problem. This program is currenti'

in the de-bug stages. A complete description of the new program will be presentc._

in a later report when computed results are available.

3) Cross-Flow Instability Problem

The third part of the curre_at effort is to study the problem of cross flow

instabillty associated with very amall radius of curvature areas such as the lead-

ing edge of the shuttle wing. This phase of the study wil] begin _fter the com-

pletion of the elliptic cone flow field study. The programs re_ultin_ _ro_,_the

elliptic cone study are necessary to the cross-flow tnvesttgatiov,

4) Other Work Partially or Wholly Supported Under the Current (;ra.t

A) Ntmerical Advectlon Experiments
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Appendix B is a paper which has been submitted to the Journal of

Applied Meteorology for publication. This work was partially funded

through the current grant and is included here. Behrooz Fattahi was the

Graduate Assistant working on that particular paper.

B) Undefined Problems

Jim Daywitt has been supported by th_ current grant during the past

year and will be starting on his thesis in September. His thesis topic

is still undefined. It will be in an appropriate area dealing with finite

difference methods in aerodynamics.
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NOTATION

L •

A,B,C

a

c

E,F,G,H

I

1,j,k

iR • IN, iC

h
T

M

P

q

r

S

UeVeW

U

x,y,z

x_,y',z _

Coefficient matrices of the g_s dynamic _gu_tion_

Semimajor axis of the body

Semiminor axis of the body

Characteristic length _f the body

Matrices of conservative variables ( Appen_i_ A )

Identity matrix

Unit vectors on the x,y,z dir._ctions

Unit vectors in the radial, n_rmal and cros.9 flow
direct ion s

Total enthalpy

Mach number

Dimensionless pressure

Dimensionless velocity vector

Dimensionless velocity vector in the _ direction

Radial vector ( Figure I )

Radius of circular cross section in computational

system

Entropy

Dimensionless velocity components of q

Dimensionless velocity compon=nts of q_

Vector of independent flow v_ciahl_s

Coordinate directions in the physical CareesLan

system

Coor,linate directions in the :omputational

Cartesian system



c_

A_

A6

A_

A6

A8

_,6,B

P

V

Angle of attack

Ratio of specific heats

Incr,_ment in the _-_lirection

Increment in the 6-direction

Incremel, t in the _-di_ection

Mesh ratio

Mesh ratio

Angle through which flow is _,panded or compressed
( Appendi, C )

Coordinate directions in the zom?utational }_ola[
syst,+m

Dimensionless density

Eigenvalues

Vector operator

Subscripts:

c

C

e

J

k

max

N

tan

Pertaining to the circular coue

Crcss flow coordinate direction ( Figure I )

Pertaining to the elliptic cone

Mesh point in the 6-_irection

_esh point in the _-direction

_aximum

Coot-climate direction normal t_ the bo_y sur_ac._

( Figure I }

Radial coordinate direction ( Figure I }

Tangential component
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k !,.

i,!

XfyeZ

xlryt,z I

1

2

_,6,_

vi

Partial 4erivatives with respect r_o x,y or z

Partial _le_ivatives with re_pect to x',y' o[ z'

Flow variables after the p_edictor

Flow variables afte_ the corr-_ztor

Freestream condition

Pactial derivative with cesp_zt to _, 6 o[_

Superscripts:

-_ Predicted value cf flow variabl_s or intermediat_ _

matrix forms

n Spacial step location in integration

• ,- .qu per IdyeL, gilblayer

- Dimensional quant, ity

• 7"

?
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5U3MARY

The solutions to the equations of _otion for invi_;cid

fluid flow around a pointed olliptic con.e _t incidence are

presented. The numerical m_thod used, ._cCormdck's socond

order preferential predictor-corrector finite ]ifference ap-

proximaticn, is applied to the fluid flo, equations derived

in conservation-law form. The entropy Ooundacy zonJition,

hitherto unused foc elliptic cone problems, is investigate,]

and compared to reflection boundary con_]ition solutions. Th_

stagnation streamline movement of the inclined elliptic con_

is noted and surface pressure coefficients are plotted.

Also presented are solutions for in elliptiz zone and a

circular cone at zero incidence and a circular cone at a

small angle of attack. Comparisons are ma_.e between these

present solutions and previously published theory.



I _ _ObUCTION

The reduction of complex bodies tJ simpler configura-

tions in investigating aerodynamic char_zteristics has long

been accepted practice. Leading edges of thin airfoils have

been assumed to be wedges of finite ( or infinite ) span: and

fuselages have been assumed to be circular cones attached to

cylinders. These a_sumptions enabled the sci_ntist/enginee[

to apply analytical methods to acquire solutions to the, par-

tial differential _quatious of fluid motion. However, as th_

aerodynamic "state of the art" grew, the co[,fi4urations be-

came more complea, and the "sialplifying" bodies became more

complicated. Therefore, it was necessary to seek improved

and more efficient methods of solution.

The applicability of numerical methods to the sol,ltion

of differential equations had been long known an] understood.,

but it wasn't until the advent of the high-speed digit_l com-

puter that efficient use could be made of th_,_e method_. Al-

though these llumerical approaches are quite a_enable ?o many

problem types, th÷y should not be regar]ed as panaceas. Many

times, more |,r_.blems ate croated than solv._] with the intro-

duction of the numerical techniques. Difficulties with nu-

merical stability, accuracy, computer ti_e and storage re-

quirements, and applicaDility of the numerical methods to _i_p

physical situation often cause s_.=ious problems.
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This paper is primarily concerned with the numgrical so-

lution to nonlinear conical flow and, in particular, the flo',,,

around elliptic cones at incidence. Th_ circular cone has

been the accepted configuration for modeling the supersonic

flow about bodies of revolution for decades. However, for

non-axisymmetric bodies immersed in a supersonic stream, the

circulaL cone is of little use. Therefore, as V%n Dyke (25)

points out, the elliptic cone may become the Model for these

geometries. F|Jrthermore, ell_ptic cones provide certain

aerodynamic characteristics that surpass t_os_ of their cir-

cular counterpart ( e.g., from ChapKis (7), greater L/D ratio

for the same cross sectional area per unit height ). Evi-

dence of the impact of the elliptic geometry :an easily be

seen in present-day lifting body and space shuttle designs.

The probl_m of the supersonic flow field s_rrounding

these bodies has been investigated by Ferri (S,g, IO), Van

Dyke (25), flelnick (19), Kahan_ and Sol_rski (13), Jo,les

(12), Chapkis (7), and _artellucci (18), as] others, with

varying degrees of success. The papers by F_rri (]0),

Martellucci, Chapkis acd Jones were of greltest assistance in

this study, since they sot only pre._ented theoretical compu-

tations, but also numerical and experim__ntal :omparisons.

The publications by Ferri (8,9), Van Dyka, and K__hane arld

Solarski were basically of theoretical c_ntent. Melnic_'s

Faper was of special interest, because it succinctly ex-

d



plained the streamline pattern and vortical singularity proh

leas near the body.

South and Klunker (2_) indicate tw_ general _ipproaches

to the solution of nonlinear conical flows. The first in-

cludes the "distance asymptotic" methods, where initial con-

@itions are chosen near the ex)nical apex, and numerical inte-

gration proceeds downstream until conical similarity condi-

tions ( defined later ) are satisfied. ?he second approach

consists of "conical" methods that invoke the conical sc,lf-

similarity, then reduce the problem to two i niep_nd-_nt vari-

abl_s. There are different variations to the approaches

above: Rakich (22), Chapkis, Mactelluc:_ and Ferri utilize

different forms of the method of characteristics; Kahane and

Solarski propose Ward's elliptic slender body theory; and

South and Zlunker implement the method of lines ( method of

integral relations ). For a brief history of these develop-

meats, the reader is referred to South ind Klunk__r (24) .

The method chosen for this study wi_ the "distance as-

Vaptotic" method, utilizing a finite difference approach.

ilowever, this approach was modified sli]htly to _nhattc_, ,,.ta--

btlity considerltions. Instead of inte]ratlng Iownst__am

until convergence was attained, the integration was initiate,!

at some point _, and a solution at so_e point _ + _ w_s

obtained. This solution was then used is the lnlti_l con li-

tion for another integration step at point _. A mole de-
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tailed explanation of tl_e reasoning and pcoce_ure is p_:_:_ent-

ed later.

The elliptic body surface was defined mathematica!l}.,

and boundary conditions were applied at the body surface and

the unknown shock position. Freestream values for p[essu[_,

density, and velocities were used as initial conditions so

that the numerical representation of the shock build-up _._:_

as if the cone had been impulsively started. However, th_

transient numerical flow field behind the shock may not [-ep-

resent the actual flow field until convergence has been

attained.

The equations of fluid motion were simplified by as-

suming: I) negligible viscosity, therefore eliminating

boundary layer effects: 2) negligible h-_at conduztivity: 3) a

perfect gas: and 4) conical flow, resulting in isentropic

flow along streamlines. The physical properties of conical

flow aL_ such that pressure, density, vglocities, _nergy and

efltropy relain constant along rays emanating from the conical

apex ( i.e., the aforementioned conical similarity }.
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PROBLEM FORMULATION AND METHOD OF SOLUTION

Introduction

In the numerical solution of a flo, problem, selection

of the coordinate system, numerical technique, initial condi-

tions, and boundary conditions is of prime importance. Al-

though presented in a somewhat disjointe_ manner, these con-

siderations are q_ite important. For ex_p!e, the choice of

a coordinate system may depend upon the manner in which the

boundary conditions are applied and/or the numerical tech-

nique chosen. I. turn, numerical stabil£ty an_ accuracy may

depend on the manner in which the bou,d_ry condition_ are em-

ployed and in the choice of coordinate system. Initial an._

boundary renditions are easier to derive if the c._or0inate

system is as straightforward as possible. However, _i_ferent

coordinate systems have different eigen_lue structures and

therefore different stability characteristics.

This sectio, attempts to delineate the approach isple-

lel|ted in setti,g up the elliptic cone p_oblem. To acquire a

lore COlplote tlnder:_tanding of this approach, frequpnt refer-

ence to the appendices is suggested. An attempt is mad,. to

keep this section free from lengthy, tedious derlvation_;.
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Coordinate System

The coordinate system chosen, shown in Figure I, was t_.

result of a double coordinate t_ansform_tiono The first

transformation, from the physical Cartesian system, (x,y,z),

to the computational Cartesian system, (_',y',z'), converted

the elliptic cross section to a circular cross s_ction ( sPo

Figure A-] ). This constituted a stretching 3f the se,,imajor

and semiminor axes, a and b, of the elliptic cone by a factor

of b and a, respectively; provided a,b >_ 0.

As a result of this transformation, angles around the

body in the y,z-plane were not conserve_ in the y',z'-plane.

Evenly spaced angles arounl the computational Cartesian body

produced rays that "clustered" about the B : _0 0 meridian in

the physlcal _lane ( see Figure _-I ). Phe _l_tion

governing the angles is given by:

-I

a tan B ] , (I)Se --tan [ c

where _c is the computational plane body angle. This behav-

ior is beneficial for elliptic cones of llrge eccentricities.

For these cases, flow near the 8 = goo m_ridi_n is of great

importance 4ue to the presence of large gradients in th@ _lov

variables. Using this transfot_ation alloys mor-_, mesh poi,ts

to be concentrated in this area, therefore moni*orinq the
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flow more closely.

The second transformation carried the coaputationll Cc-

tesian plane into the computational pollr plane, (_6,_),

seen in Figure I. This system allowed f_r th_ easy applica-

tion of the elliptic boundary conditions to the :irzula_ cone

( described in more detail late_ ), while retaining the coni-

cal similarity of the flow field. Fo_ the n.laerical i_It_g[a-

tion method chose,, requiring a coordil_ite axis to be coinc,-

dent with the conical axis ( i.e., x = x' : _ ) yielde,_

simple functions of the gas dynamic vari4bl_s in conservative

form ( see Equation P-11 ). These functions could then be

easily solved to yield explicit functions of the gas dynamic

_ariables.

When the aforementioned assumptions (I) negligible

viscosity: 2} negligible heat conductivity: 3} perfect gas;

and _) comical flow ) were applied to the equations of motion

of fluid flow, they yiel0ed the following equations for con-

sideration:

X-Bomentuh : (P + gu z )x + (_uv)y • (_uw) z = 0 (2)

¥-_iomentam: (pUV)x + (P + ¢v2)v + (PVW)z = 0 (3)

Z-Nomentum: (puv) x * (pvw) v + (P + 0wa)z : 0 (q)

Enecqy: q.(_- z 2 ) : 0 (_)

i ,!



CoDtlnui%y:

llow_v,_.[, t ho_e ,',lU,_ t ion'._ ,,Irt not y_t in I for_ that wi[i

dllcw num:,ric,_] ::omput,lt[)ll. ?boy must first b-, tt_n._forine]

tO *h_' t?olnplitrlt lon,i_ pol,tt- rook!indte syst._ to b • :)n ii._f=,l'

with tb,:, ,t.,om_'tr_ of th, p['oblen. Then, ._nce the tI:tll._;5Ol _-

matiuv qiv_,s ri;_ to no,uhomoqen__ou._ terns, th_ _.quatior, 5 mu;t

be _xpande '_`to con:;,gLvatiDn-law farm t3 _zzomgdate the numer-

ical method. Thi.q is 33P.e in Appendix %. For nlm=ric]l si_-

l,ificanco, a_d _s a matter at general Dr_ztic. =, it iS conve-

nient to non,_i:n_n.;inna]izo the, flDw par]_eterq. Th : non,_i-

mel|:=ioll,iliz,t; ioli -;(:itemo u_;e,! i.; presont_| in _pp_n,_ix .v.

?_um,_L'_c,tl gethol

Th_ numpricai moth? _. cho:;:,n _as MacCgrma:k' _ (16) :;Peon4

o_d._r pl-eferential |:re]ictor-corrector, utiliz_l] B forward

'liffeEen,;in,| I,r_ic-*o[ .;t:_p and _ backw_r] diff,_c_nzin,j c,')r-

rectoL" SteD. ".'hi; _r.ethoP, w_s s:h3wr, by K,Itlo[ (qg) to 5-, _u-

poci,)[ to [i[-_ OL',:='r an_ inal:y :;econd OUie_ m._thn@:, in t"t'mq

ut ,.:oml,_,t_,r tim,, ar_ I _raq_, p[:,grammin] _,_s_ anl _ccut_cy.

_i;_' m,,ti_oi i:; _ [iI, zte litfele'_c, tochnila _ that i'; t,,lm,,_

II;):,'I,.l','lll l,ll 1' :1,':'|,i:,_-' I h .... _,ift 'r,,;l"in! lirectl.on lr_ th., i,r'-

,]I(:l,ll ,II|,! CtgII"CI.,ll ..t 'p , ,'t:: I'_ cha.l=1 -it will, nrovi,: ._,

t ii,, ,,' ,.'l',.r l_'._: ,l:t' ¢',1li:,I ,t.=nt _'l',h fh_ s._ "o[II OF] 'I IC('qt,Icy.
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Whea applied to a system of equations of form-

E x + Fy + G z = 0 , (7)

RacCormack's predictor-corrector is written as:

Fredictor: _n+l En Ax. =n _ Fn
j,k = j,k- _yL rj+l, k j,k

Ax ..n . Gn
- %'_z("i, k+! i,k

: _ 'F--_+ICorrector: E n+l E n + _z+l _x (_:+! )
j,k %[ j,k,., j,k _v j,k. .i-l,k

-_" j,k- '_;j, " "

)

(_)

However, as can be seen from Appe,,dlx A, the, ._y;tem <,_i ,,_!ua--

tions has th_ form:

7
L

l

%

k

E x • Fy • G z + H : 0 . (_!

To accomodate the nonhomoqenoous _er|, it was ne.':essar? to

add the quantities:

PreiictoL': -- h n 5x
j,k

_d

Cor[octo[: - _Hj, k AX

(19)

to F.quations 8.

For two-4imens_onal flow aroun_ czrc_l.ar cones, aaplifi -

cation theory predicts the numecical met. ho_ is _t_b!_, pt_-
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vi.led ( usinq pr_._(_bt notati:)n ) :

,i n ,1

max A6

IX I _-F" < 1 (12)
max _19

are ::at t:<fi_-1 ::i,:l]itan_uslg. ?ue ,o tn _. :aupl_1 _5fa-.-t:_ in

th a. eig'.-_nvalu,, ;tr',l,:tur,:,, the ._:_ti.qI:_'.-_[ _n :)f E-j_Rtioll 1 1 w_.':

tdntamol]nt to the :;atisfaztion .)f Equati )n 12.

The eiqenvllue_, <; an! k, are a_ ]_rive_ in Appenlix D,

,in_] _ was lo_at,,d at ti,_ otltetmo_ m=_h point of fh, win :,-
max

w.i_: _. _i.l_' of a body It _njl,, of attack. 7hi._; (::;1_5_-; th:, ;low

,)h the, wln lw,:i[.i :;i ! , <.,f fh, _ bo]y to b_, t_te:Irlt_] optimlil?

wi_:._. , _n_ l,.,w,:. ] ;t_],, i : tnt,' l" _ ,'_, i.,_ i,-'.;; ,_ha3 oati_

I : ;}}; .,ll. r",;/ _'i!i i :,L<)_>_.",IIi _ 'W_ ; :.L)H_ ] _ h I+ :
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numerical accuracy. In effect, the numerical method was con-

tinuously operating at ( or near ) the optimum mesh ratio.

As can be seen from Appendix D:

I _max I, I _-max I _ _.1 , (lt_)

so that after a number of downstream integrations, the numer-

ical method would no lonqer be functioning optim_lly.

Initial Conditions

IQitial conditions for the flow variables cam be chosen

in at least two ways. First, the shock shape and position,

and values of flow variables between th_ shock and the body

can be approximated. This method is quite efficient with

regard to computer effort, if the approximations are reason-

able. Horetti (21) indicates that the choice of initial data

does not affect the end results. Secondly, the individual

flow variables can be initialized to fr@estream val.Jes. Al-

though quite inefficient, this method was chosen since it

resembles impulsively starting the body. Even though the

transient, numerical values for the flow variables between

the shock and body surface may not coinzide with the true,

physical solution, the shock build-up can still be witnessed.

Appendix E shows ho a the freestream quantities were derived.

L

!,
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Boundary Con,_it ion3

From _na]ytica_ considerations, the exact boundary con-

dition a[)plied to the surface of the bo]y is:

_'.VF(_,8,B) = 0 , (15)

where, F (._,6,B) " 0 i_ th,_ ,_lJation of th,. holy. AI_:),

acro ;,._the shock .;uL _ace, th,, R_nkin_,-!ltl_,oniot _quation:; mu_t

b_ :_tisJi,_d. However, num_[icll meth.ol_ cann:,+ u._e th_._;e

equation._ directly. This i:_ especially true _f finite ]it-

feronce m_thod-_, _u _ _o their differencing na¢'Ir _. There-

fore, equivalent numerical boundary conlitiDn-_ w_re derived

and applied at the bo,_y and ghozk.

The reflection boundary con,lition ]gel in this study

( se_ Appe,dix B ), assumel even functions of pt-_ssur _, a_n-

._;ity, and tangential velocity and an o41 functi,)n of n._tmal

v,:locity ,_cro.-,._ tno boly :_urf_,c_,. This 4,_v_, th._ n._z_s_ry

s_ib_.,_yer ,_ata p_i_t:;, as _ f_nction of the know,_ supe_lay_r

points, require] by the _,acCormack proWl:toY ._t_p. Since el•-

liptic con_s hav_ ,_ plan_ of fl3w symmetry ab)ut th_ 8 : 0 °,

_80 _ meridian ( s_e Figure I ), numeric_l integration wa._

,:a_t'ied out ovmr one, half th_ c,_,ical s,lrface. :hi_ plane )_

symmetry forms in.thor boundary across 4hi_:h pr=_sure, _nsi-
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ty, u-velocity, and v-velocity were assume{ to be even func-

tions and w-velocity was assumed to be an odd function.

The mesh in the 6irection outward from the body, in th_

direction of increasing 6, extended far enough to overlap the

estimated shock position. In this manner, the shock could,

at best, be captured bet,Aeen two mesh points. Pressure, den-

sity and velocity outside the shock wer_ assume l to have

freestream values.

Due to first order numerical accur_zy in the MicCormack

predictor, the velocity vectora q,, was not, in general, tan-

gent to the body surface as dictated by Equation ]5. The en-

tropy boundary condition ( see Appendix C ) used by Abbett

(I) accounted for this misalignment and "brought" the veloci-

ty vector back to tangency by utilizing _ local compression

or expansion through an angle Ao. With H0 known, the

pressure, p , following the expansion or com p[assion was cal-
2

culated; and with pLessu[e Known, density, 02 ' at the body

was obtained _y utilizing the perfect gas equation of state.

From energy considerations, the velocity aagnit_j,_e, lq21 , was

found. Finally, from vector r_lations inherent in the flow

geometry, the direction of the resultant velocity, q , was
2

obtained. A complete derivation is presented in Appendix C.

For this problem, it was necessary to apply the. entropy

boundary condition after the predictor step. No analytical

proof for this conclusion is readily available. However, [t
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i:_ n<'ii,'v,_! th,it rh, _ imm_liat+, _pplicati)n of th.= ontr0py

boundary con,!i+iou ( i.,,., let_r t he pr _.li.-.tot" ) allow _ th_

co['r:,cS'_':i :,tIlt.S,:e h_tln,l_ILy conditions t> be p[o,_aqate,l into

the flow I ield ._o._a,,l, r,,_ulfin<] in bett_r nume_:ica[ i_,hav-

ior. in thi:_ ._ud'], ,_pi,lic.ltion of th_ b._.andsry condition

aft¢_r t.h_, corrector resulted] in instabiI, ity, ginze _ continu-

al expansion wag eventually attained, whizh drove the body

s:l_face _u_essu_e to zero.

Th_ boun.lary conditions fo_ the elliptic cone were de-

rived ill th_ Fhysical Cirtesian system _n_ tran_for_e,_ to th_

computational p,)l._r -_yste_. This resultel in th_ applicafiDn

of the _,]liptic bo,ladary con :li.tions to _ :irculac c.,]ne.

Sinc_ _ th,' numeric.l] metho,_ di._cr, etized tho holy, the in_,tho,_

could de,_,uc_ . ti_,._ b)dy g_ou_try _nly thrglgh the boundary co_-

dit ion r_lations.

z

: i¢,i!:

.- _'_

MethoJ of Solution

The coor,linato system presented w_ sele=te5 primarily

because it ¥ielled a circular cone in th- • :ompur_tion_l sys-

t_:m. _h, ._gnL_i:ance of thi:_, ._part f_m th_ pr_viou._i_

mentiol_,,,: inver:_ion -_i_i._].i_ic,_%ions. wa_ that bounl_ry .':.onqi-

tiol_._; coul.| |'.,'spl)lie,| t._ ._ constant cog_'dil_at.e surface

( &_.tl., ,'oll:it,ll|t citcul,_r cone .sngle, 6 ).
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The desired elliptic body shape could be acquired by

choosing appro_._iate v,alues for the semimajor and semiminor

axes, a and b, and the characteristic length in the body axis

direction c, which governed the slenderness of the zonfigura-

tion. After transforming the elliptic body to the computa-

tional polar system, the number of angular inzrements around

the conical body ( NBET& ) were chosen, and the outermost

shock position ( SHOCK ) was estimated. Thes_ choices de-

fined the mesh increments, A_ and A8, use_ in the numerical

integration, as follows:

^8=
130o

NBETA

A5 = (SHOCK - Cone Semiapex A_93___ .
MDELTA

(16)

Integration was performed from 8 = O0 to 8 = 180o in the

positive sense of trigonometry ( see Figure I ). _s indicat-

ed before, th_ 8 = 00, 180-" ._eridian is the plane of flow

symmetry and therefore reflection across this plane was used.

This reflection compensated for the backward an,_ forward

differencing requirements of the macCors_ck predkctor-

co[rector sequeRce.

For the _eflection boundary condition, the predictor and

corrector steps were completed before the boundary con,.iltion

was applied. This approach demonstrate_ good stability char-
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acteristics and yielded satisfactory solutions. As previous-

ly noted, the entropy boundary condition was applied after

the predictor step.

Program execution was terminated automatically when tho

convergence criterion was me_. This criterion wls _efined

as"

1%
P

n-I
P

< e (17)

pn-Iwhere pn is the present pressure, is the pressure of the

FKevious iteration, and ¢ is the convergence tolerance ( usu-

ally ¢ = 0.001 ). Equation 17 was satisfied _or ten consecu-

tive iterations before the execution was terminated. This

gave rise to a conservative deviation of O. IK per iteration.

The program logic and underlying theory were first

tested by investigating circular cones at zero and small

indices. Agreement with other accepted solutions ( e.g.,

Babenko, et al. (4)) was such that the approach was deemed

valid, and the elliptic cone problem was then confronted.

Results of the conical computations are reported in the next

section and the elliptic cones are treated in the sections

followinq.
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to whether thn shock perdition could be _.cu,cately d:_pi'.ted.

However, as .<=,_n _[om Fiqures 2, 3,_ and 5, ti_ = shozk po_itign

is cleai:Iy defined _nd reasonably accurate. Figure 6 _hows

the numerical s_iock position overlying Blbenko's (_) compari-

son @ata. The _hock positions c!Iculat=-i by e_zl boun]ary

con_lition were ]uite close and are repre._entel by the _._me

data point in the fiqure. As can easily be .q_;en, %he numoL-i-

cat :_hock i:o._ieton repr_,s_ntation is quite :ioo<i. For the (_ =

0 ° car;e, t he ,]f,L|t|l.ti .':hDcK po__ition, _r.9_ NArd% r__ 1115 (I_) ,

i:_ 6 :: I% 7o whil_, th:, n,,1!n_,t'ic,_l angultr :;hoc_ uosition wa._;
• f

calculat,',i ¢o b . 6 - 1%._ °.

Fez th,_ clv(:ular c,)ne at zero _ngl? of ttt_k, th _ en-

tro[:_ boundaz'y :or.,|ition invariably yi_[_-_ 4 b_.tt_r r'_p _=

senCation of cho pressure and density v_ri_ion 9utwar,_ from

ch _ body. Figure.; 2 anJ 3 show that fh9 9,_ropy bounl_ry

condition yield_d ,')ress,lre and density _l_tions that match

those o [ B,_bonk.), while _ho reflection boun]ary condition

yiel,]_(] :_ol,ltio,_:; that wore 1.5_ +o 2.0_ hi,lb. _l_hou_h ob-

viou:;ly llOt ,t_ lCCll[at = ,is the ,,ntropy l,,)unla[v ::on _ it ion ,

esp,.cj4lly ,it *_e !))4y :;urf_co, th,. rofl:.,zt so_ b_ur |ar._ con-

ditio, :_|,o;lld n,)t t.e co.mDi,_t=ly di';co_nte3. 3u= to sl_w c_n-

verqence properties of the reflection ho'sn(l_ry cDn_iti.on, _nl

a premium an co,_p_it_r tim@, the numerical int._qr_tion wa.,

ter,_inat_d before converq_nc_. However, _s integration con-

tinued, rl.e t-_._lec_ion bounlary condition soi_tions dp-
r

!i
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proached those obt_line4 by Babenko.

For the circular cone at angle of _ttlck ( _ = 5 ° ) ,

these same trenls were witnesse_. The conical body at inci-

dence gav_ ris_ _ to _)res_ure and density _r_di_nt_ aroun.i the

bo_]y. This _ff=ct <:an be seen in Fiqur__ _ an l 3, whet ":_

presstlre and d_nsi.t? ar_, plotted for thr_e anjul_r post_ion_

( 8 =: 0 °, gO ° ,i_l] lqO ° ) around the boJy. Th_ win:lwar] :_id_

( _ : 180 ° ), the l,,_io_ of qreatest compression, i; aotly

d_pictt.*,] by th,, ouew.lrd pr_*.;:;uro variati)ns from th:_ ho,_v to

the cri:;p numetic,,l _h,>.:k. The le_war,l :;i,_e of the ho,_y ( _

= 0 ° ), the region _f !,,a_t compcession, show_ • somewh_+

poorer pre:_sure a.,,i shock representation. ?his is _ue to the

eiqenvalue structtlre and its previously noted e-ffezts on the

numerical inteqr_tion around the body.

Of gzeate_:t concern we_'e the density anomalies at _ho

body surface, ._:aen in Fiqures 3 and 5. rhi,z ml:_beh_vi,>[ re-

sulted from tho a:_..u_.ptions made regarding th_ _h_ flow ,oar

the body a_d tl_,: ::ul_se,iupnt reflection h_undary conlition.

• o oliminate this problo_, the entropy boundary con_itlon w_

applied after the ,umerical p_'ocess had been brought t,, n_ar

convergence using the reflection boundary condition. ._ht,_

le_ to the most drama%ic evidence of th__ bene_iaial tr_i_:_ )f

the entcopl bo.lndary cor. 4ition. For th. o_ = 0 ca:_, th .

_ reflection _ensity _olutton at the body ,_s Iov oy 2_ _-, L,ut
7
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when the ontropy h,_un:la_y condition was uspl, th_ hady valu_ _

of tensity c,)incii,,,_ with Babenk.)'s te_llt_. This _;am, :_,_-

h_vioL ca, bt, witn_.;se_ foe the _ = 5 ° :_se, although

,igre_sent at tt: -_ .5c_,ly i; nut ex_ict.

It w,l._ fo:in'] that for con[tquratial-: h_vir.,l ,Jc_di-_nt-_; ,)t-

[:low vaLiable=; in the l,_t_L'a[ :_irection ( the #-li[,_ctiop ),

the numerical :,<)}_|tion }emon._trated a "I _g" when the _,,_[opy

boundary cotldit_ol, was _%pplie_. After 9nly a f_w int_.]ra-

tions ( I or ! ) tlt.;lizir.g the entropy zon_ition, solutions

on the bo_v we[: very close to the complrison data. H_w'-ver,

as integratioll continue,|, further convarjenze w_ p_infully

slow.

T)I+: ir|tlo,lUCtlon of the ont[apy bo'ln.i_ry condition ,li,_

not ,ilf_f:t tll_. holy pl'+,;sure .is much as it 4i _, _!i_ ho_y ,Ion-

.'iity, sincr; th,, r,,l lect.,o_ l, ou,dary conlitio_ yial]_l ,_,_,_a

rept'('sent_tive pre';:_ure valu(,s. From FL jar," q, for th., (z =

0 o _ituati_)n, the entropy boundary condition s4ain brought

the surface p[o_sur_ sol_Jtion into accor]_nze with the com-

parison p_'ess,l[_ solution. For the (x = So case, t,_,_ charac-

teristic lag was aqait, ancountere_.

The::e preliminary results led to th+ conzl_IJ_on that _he

,,ntropy holln],_ly ,,:,111%itLon better reprP_,nte| th9 _=tu_] flaw

fio[,! fOl the ,'¢r,-ular con,.,. Th_rufore, 309 to the, af )' ,_,,n-

_Lon,_,! ,_imi1,_riti,,;; b,,twe,_n th, etlipti: and ::ic.':,li_! (:,)n,"

pr,)i,[,'I:;, It wa'; C,)11(:|11,I,*'_ th]t t.b," Ollt. r,)py bo_lni._ry c )n |i-
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tzo:_ woul4 yi_'i', th, _ betteL" representatiou of th._ flow icoun,i

the elliptic cone. _ith thi-_ ded4ction, t_e plan of attack

on the elliptic C'Ollt_ Wa.i for_.ullted.

The _]eoaetry _i.'_._ori._ntatign of th_ confiq,lration woul-]

be define,_, ar_.J llum,_rical integration, _ _in:_ the rpfle,ztion

bound iL-? <:on.]itio,, wou[,_ be use4 _o azqui['e _ nearly con-

verq,_,1 :_oiuti_n. Thi.*; :_olution would th,:_ b÷ compare:1 to ex-

i,.]tirl,l ,i,ltd ,_iiJ,, if .h,_.i,+_|:;at i.*;fact(}ry, woul! b'., u._e,l a._

init_,,] ,:_)i:,|itjJn._ fL_[ rurtii_,[ nulneiiCa] int_,iiat ion, inc',_[-

[,orating t.h,' (.l_tI.'o_,y}:oUY_1,*ry canlition. Thi_; inte'ira_ion

woul_ b,, colit, in,],,,| _z:Itil conv,_i. J_,_ce ( 3[" Ile(t? coI_v_.-c],-_I_c _-_ )

was at tail, _,_..
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'_oi_i )n_;. A m,_re accurate des=ription of the flow fie! ,_,in

th,_ _ : ()0° reqion coull b ._.acquired by further clu:_terir:q _f

In ol,_,_'r _o f,lc-ilit,lte the compari_;on with Zhapki:;' (7)

[,,:;aLt ;, th,' [oilowi m; _,aramot_,,'_ we/e cho_;en for the ellip-

tlc coi_ a+ z,,io i:',':id,>l_ce: a/b = 2, c -- 5.6667 in,q M -- 5.
(_

For the plli_,tl : coyi,_ ,it .Ingle of attack, comparison with

Mar%_llu_:ci':n (17) theory required an elliptic cone with dif-

ferent d_fining pdLam_*%_rs. These parameters were _efined as

follows: a/b : 1.708, c = 1.0 and Z = ).09.

Zpto ._ngle of Attack
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cb.'-;erve_ .it ti:._ .;t t_n,lt:on :-.tr_'amline, i )c_t÷| on the _ : 90 °

plane, which l,:_,ic_t ed the i)resence of _ .._tron_! shoTk. As

mention,:| b_,for,,, lhe _f%tropy v41Je r_qlired by the et,tt-opy

boundary con4_ioll wa.; calcu:_to_i using [l._w v._z-iab[_,:_ ac-

,|uit,._l fz,',m ti,'.'_ pllne.

The' v,tri,itLo,- .)_ :;,lrf,lce luessut'e ":Jet fi.-.ient aro_Ind _he

elliptic bo,]y i:, [:reJent_| in Figure 10. The r_flection

boun4ary conditio_l matches well ChapkiB' (7) theDr_tical

data, except ie ti,_ ran<le 80 ° <_ B <- 100 ° , dhi'.:h roughly coin-

cites with the region cf <Treatest body ztlrvlture, rh= sol_l-

tion obta[ne,l u-_izlq the entropy boundary zon_i+ign, a]_o

:_hown in _?_.gul., I0, i:: f _r from the theoretical 9xp_.ct ition. 3.

The figuv,, in_ic,_t,,.; a mot',, con._*,int sUFfaCr or.,:_ure co_f-

r

ticiont _or Oo ,. 8 " °0°, while the 70 ° .< _ _ ')0° r=qion de_.-

on::;tr,lte_ 4 :;h,_rp,_, surl4(',-., p_'essure co_fflci:nt. _radient. A

weak local ,:xpaz_sio_z ill this latter regi3n wo_,z].l explain this

behavio[', 41though +hi.<; is pure conject,l_e. (."his will be

di._cusse._ ir, qreator detail in the foll)linq ._e::tion.) Du_

to the ._ymmet_y o:" t.h_ Flow, ti_e region .9_o .< _ <_ 1_0 ° should

match th_ 0 o .< _ <[ <_,3° r_gion. However, Figur_ 10 shows an

ano_,ily _:,.,._r8 ' II', ° f_r h3th bo,_ndaL'? _ond it ions. At this

_,oiut, _'i_ ],,,.-'r hUm,,'z, zca] "ov_.r'=hoot" or _i_|env_lue _,robl_ms is

:;,;-;;,,,,-t_,,|.I;I,,,to _ ,_:k of c.,_putor f_ln| _1|'.Ia,.l ti_ ,, t m.:_ce

t;,<)_ouffh ,, !mal y::[:; (',_ul,! n.)t i),, carried ),it.

i
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Anql_ of Attack

foL the a_zqle-of-attack case, tho _hock position around

the body was aTain Inv_._tigatel. The r_sults are pre._ente;1

in FiquLe 9. The point at which the sh)ck mo_t closely ap-

proaches the body indicates the strong portion of the :_hock

and the approximate location of the stajnation ztFeamline.

As the angle of attack was increased, th_ stagnation stream-

linp mow.d in the direction of increasin_ B. For _ = 5 ° ,

the location of the sta,jnation point on the body wa_ B _ 98o.

The llncet+ainty abollt the lateral stagnltion point, an] the

Pxt_,llsiolt of the Stdgn_tiou ._tr_,amline into the flow field,

w..,ro major ._nurce._ of diFfzclllty in the Ipplication of the

entropy boundary co_ition. Without a reasonably accurate

approximation of the stagnation strelmli_e position, entropy

on the body sur£ace coul ,_,not be accurately calculated.

Therefore, the boul|dary condition was l_.ss reliable.

Figuro 11 shows the variation of _ucface pre._sur_ coef-

ficient, calculate,| from each boundary c)ndition, _round tho

bo,|y, c¢_.parpd to _artelluc.ci's (IR) theor_ti:al data. Gen-

,,[,_lly spPakin,l, a_Ireo.m,:nt i_ good; ho_._vec, the _0 ° _< B <

80 ° r eqioz_ is on@ notabIP _xception.

It :_oems intuitive th,_t stlpersonic flow _rottn,i a cornor

( _uch a:_ the flow t tom _ho stagnation _oint aroqnd the el-

"%
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lipt_c ,.;ho_Id,_r ) would ,,xp,_rience a slilat, but noti'.'._-_l _,

expansion. No theouetical evidence of thi_ w_s found i_ the,

Ixterature _vaila._le; however, _xperim_ts :onduzt_.l b?

Zakkay and Visich (26) for a similar elliptic cone _ubj_ct_]

to s_ailar flGw conditions, but at _ = 15 ° , seem to veLify

thi:: con j_cttm[_.

Fi.]uLe 11 a|,_,,.ars to indicate a l.ocllly _xp_nd*d flow

for both boundary conditions iJ, the previously n_te_ 50 ° <-f_

< 80 ° region, although the entcopy bounllry con lition Fie] ]_

a more p[onouoced behavior. [n Figure 12, the density _rotlnd

the body is plotted, showing the entropy and £efle:tion

boundary condition behavior. No comparison dlta was avail-

able, but the behavior s_ems to lend credence to the "expan-

sion hypothesis."

The validity of the un,leL'Iyino the)ry an_ _ssumptions,

a,d the _i,plicability of the entropy bo|inJary condition for

more closely approximating surface flow :h_razteristics, have

been demonstrated. More tk_)rou_}h investigation of the numer-

ical behavior o_ the entropF boundary c_ndition _n_ a _ore

concise method for obtaining the surfac. = entrgpy are needled.
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APPENDIX A: COORDINATE SYSTEM AND CGNSERV_TIVE F_QrJATIONS

Coordinate System

The coordinate system chosen, Fiqure I, required two

transformations to acquire the final computational ._ystem.

The first transformation was from the C_rtesi_n system,

(x,y,z), to the computational Cartesian _ystem, (x',y',z'),

_-_:; via the transformation:

y' = ay (;t-l)

Z ° = bz ,

where a and b dre the semimajor and semiminor axes of the _l-

liptic cross sectio,, respectively.

( g ----k-'<' ( F_-__'

Fiqurp A-! Coordin.lte system transfora_ ti)n



The effect of the transformation provile_ by E_uaJtio_z:_

A-1 is the deformation of the elliptic :co_s _ections in the

Cartesian plane Into circular cross sections [n the computa-

tional plane, s_*e Figure A-1.

The gener,_l equation for a right eltiptiz c_u_ • i_:

_5 • :_

a c

Referring to Figure A-I and Equations ._-I, it can be seen

that Equation A-2 can be written as:

The [inal transformation takes the :omp,,tational .iarte-

siam system into the computational polar system, (E,6,_), by

utilizing the 4eometric relationships in Figure 1:
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Conservative Equations

The MacCormack second order p_eferential predictor-

corrector reouires that the equations of flui_ flow, Equa-

tions D-6, D-7, D-8, D-9 an _ D-10, be written in

conservation-law form. These fluid flow equations cau be

written in matrix form and L-epresented _y:

E x • Fy + G z = 0 => E x. • aF v, • h,;z, = O . (A-7)

The desired form is:

w • aF 6 • bG 8 • H = 0 . (k-_)

From the chain rule and algebraic manipulations, Equation _-8

bec ome s:

1 1 1

Er - 1_. cos6sin6) E 6 • a [(_cos_6cos_lF 6 - (_cot6si,slF ]

b[-;l(cos26sin8) G6 • I_ (cos_cot6)G6 ] = 0 . (A-9)
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From Equation A-tO, the matrix represenataion of the flui_

flow equations in the computational pollr system bezomes:

(P* puz )

g (0uv) +

_ -%(pu) sin 26

%(P_ou')sin 26 +

-_ (puw) sin 26+
-_(0uw) sin 26+

+ ( a(pv) cos s , b(pw) sins)co_6"

(a(puv)cos s + b(puw),_inS)cos2 6
(a (P+ pv') cos S + b(pvw) sinS)co_6

(a(_w)cos s + b(P+pw 2)sins)co96

+

(-a(pv) sinB + b(pw)cosS)cot 6]

(°a(puy)sinB ¢ b(maw)cosS)cot 61
(-a(P+ pv_)sinB • b(pvw) cosO)cot 8{

(-a(pvw) sinS + b(e+pw')cosS):otSJ
(A- 11)

S

2(Pu).qinz_" ÷
(P+Pu z)sip28 +

2(puv) sin z6 •

2(Pu.)sin z 6 •

(a(_v)co._8 + b(pw)si,8)(cot6 + sin26)

(a (_v_cosS + b(puw)sin@) (cot 6 • sin26)[

(a(P•pu)ross + b(pvw) sinS) (:or8 + sin28)I

(a(_w) coss • b(P•pwm)sins) (col 6 ¢ sin26_

=0

which has the general form of Equation a-8.
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APPENDIX B: THE _EFLECTION BOKINDAPY CONDITION

The equation of the elliptic cone in Cartesian coordi-

nates can be given by:

2 Z 2

rlx,y,z) --(/) + (z) - (_) = o . (D-l)c

Due to the conical flow nature and the fact that the body may

be replaced by a stream surface, the eKact boundary condition

is:

q. VF = 0, on the body, (B-2)

so that the velocity relationship that must be satisfie3 on

th_ elliptic bo._y surface is:

Z -=(-5'= . z_._w(_b) (B-I)
u yc yu a .

_ •,i:I_ An alternate ray of expressing Equation B-2 must bethat the numerical method can be used. From th_

thp problem, s_ Figure I, it can be seen that:

t

qcan = *_ x (g x _)

and

_ll --e

IqBI = q" _N "

fOUnd, SO

geometry of
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L
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From ca l(:ulus :

-x

x = Z _ Z 2I_FI [_. + ,, + "_4 ]

(8-6)

so that Equation B-q, becomes:

-- { z ¢uz w_c

a ? •

and Bquat.ion E-5 becomes:

vhere
yt Z zd . [._+ +b" "_] .

(B-g)

In the ccmputational polar plane• _quations B-7, B-8,

aa_ B-9 become:

a z b: z ,



_ .!i_

,_:i_

!,i
and

. he re

5O

[u tan_c°sS+ c_iab' c' ( "_ a b ) v
v tan26 cos_sin__]

a3b 3

[u tan_sinB v tan28 cosSsinS w
a,bc 2 - a3b _ +

+ aZb 2

(B-tO)

IqNI = ! -u v tan6cosJ3 v tan6sin_] (B-11)
d[c -_+ ab 2 + a'b ,

an'6 cos "_ + _m_)].d = [_.+ _(___ sin'

The reflection bounaary condition chosen assumes:

(B-12)

and

-_,%,-

I tan I÷ = Iqtanl- ,

(B-13)

(3-1_)

where the (+} siqn indicates the values _t the first m£sh

layer _bove the body ( supeclayec ), and the (-) sign in4i-

cares values at the first mesh layer below the body ( sub-

layer ). This component reflection can be visualized _s:



51

qN _.-d@ qN L Su_erlayer (+)
w --_

qtan , qtan

• • • r • • F • • F --l_°aYSurface
i I

* 0

Figure B-l: Component Reflection.

Equations B-10 and B-11 actuilly yield an overdet,_rmined

system. Since there are only three unk,owns (u', v" and w'),

only three r6_latiot, s are needed. Let:

qtan = _21 _I tan |, " lqtan|2' I tan 13 ) ' (B-15)

which has form identical to Equation 8-10. The system of

three equations necessary to solve for the thre_ unknowns is:

(B- 16}

(B- 17)

(B-18}

Thus from Equations B-IO and B-11 the following is acquired

for the boundary condition _elation:
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tqNi = ++re' + ( + ]b a
(B- 19)

I± (a_)=iu*tan_+ cos_I_ t.n , = ab=c=

. w e tan 2 0"_

+ (i+ tsn'8 _ sin_ v±

cosB sinR ] (B-20)
a3b3

• a 2 bc = a 3 b 3

1 + _.an _ cos=B) w ]+ ( c---_ aZb ,,
f

(B-21)

where the (+) superscript iildicates that tho variables ace

evaluated at the superlayer and th_ (-) superscript in,|icated

evaluation at the sublayer.

Equations B-19, B-20 and B-21 constitute a system o __

three equations and three unknowns which, when written in

matriI £orm, become:



_ ..... .Z_ _ii._

IL,
[

&

• i

._*

(B- 22)

Craaer's rule can now be applie_ to Equation B-22 to d_ter-

mine the desired values of u-, v-, and w-.

Pressure and density are assumed to be even functions

across the body boundary so that their no_al _ecivativ_ can

be set pg_lal to zero. This yields the pr_._ure _n_ d_n_ity

bouflda ry con_ itions:

and

P_ : P- (B-2]}



APPENDIX C: THE ENTPOPY BOUNDARY CONDITION

From the. explicit predictor, p,. p,, u,, v_ an_ w, are

known, while P2, P2. u2, v2 and w 2 on tho bo,_y are _esired.

The a._.s,mption i._; that six, re the predizt,r has only _irst

order accurlcy, q_ : (u,,v, ,w, ) on the b_4y will not be petal-

le! to the body surface as dictated by the exact boundary

condition, EquatioI, E-2. Instead, q, will be casted at an

-'4

angle, 4_AO, with respect to q tan ' thus jiving rise to a no_-

real velocity component at th@ bo4y surface. This result does

not satisfy the boundary conditions given by Equations B-2

and B-]. To rectify this, the entropy bo,lndary con4ition

used by Abbett (I) provides a local compre:_sion or expansion,

depending on _A8 to "br£ng" q, back to tlngen,:y.

Surface Tangent Plane

Body Surface

Fir.rp C-I Velo(:ity vector q_.omotry.



From Figure C-1, it is seen that:

__._ . i = cos ¢ = sin(_e) (C-1)
I_,1 N

so that,

B

where +Ae denotes an e, pansion aod -_A0 _enotes a compres-

sion. Carrying out the operation indicated in E_uatio_ C-2

yields:

.,
Ae= sin [ " " " ]

I q", I '_
(C-3)

where d is defined by Equation B-9 and t N is as in Equation

B--6.

From N&CA _-1135 (15), the static pressure after turning

the flow parallel to the body is determined by:

P,=P, [ I ° yN,=i_e). + t"h=(v÷llB_ - _(_=- 1) (&e} = + 0(48)3]
.(n;- I)' (c-q)

where M, is found from:

am I - ._



56

no = ;qo_! = I_ I = [(u,2+ v,2+ w,2) %. (c-5)

Note: P,, P,, _,, lq. I, and a, are all n_ndimensional vari-

ables as defined in Appendix E, unless otherwise specified.

From the equation of state, p2 = P= (S,P2), so that:

P/_ = P__/.2= constant , (c-6)

which yiel4s the relation for the density:

1

_- , (c-7)P,
p2 = 01 [-_i]

where PI and Pl are obtained from the plane containing the

crossflov stagnation point. For zero angle of attack, the

Crossflov stagnation point coincides with the 8 = 90 ° plane

( see Figure 1 ).

From the energ_ equation, total entbalpy is found as:

hT= --.-.Y.-,.-._T1 . ---Y-- p l.._.J ',v- 1*iS®T' 1 +
(c-s)
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vhich yields the velccity modulus, Iq,l :

-" ( ] - )]%Iq2 I : [2 _ .
"Y-1 P2

(c-9)

Note: In Equation C-8, _ , V, and I_I are in dimensional

form.

Thus, the magnitude of the velocity vector tangent to the

-8

surface is foun4. In order to determin_ qz, a unit vector in

-4)

the direction of q, is defined as:

&

_ . _,_,v_ . (c-10)
iq, lq,l 0 ;a

+

_L

; 1̧ _ _

From Figure C-I,

2 an ql , ' * (c-11)

i A

- |

(C-12)

Therefore, is in the direction of q2,but it is not neces-

.e ,0

sarily true that lq,Ol = lq,l, due to truncation error. The

A

unit vector, iqz, can nOV be formed as:
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Carrying out the operations indicated in Equation C-11

yields:

q; = {[ u, . 12 qu, x2 . ZuJL_ . w. xz" c_ b, c2 i,c *)] ,

a2c 2

where d is es in Equation B-9. Finally,

(C-I_)

can be calculated.

Since numerical computation is performed in the computa-

tional Folar system, the appropriate equations above m_st be

transformed using Equations A-I, _-_, _-5 and A-6. This

yields:

(-JzL +__(_,_r.._a._i. + ,L,_._,.LJ_eu)l • _t_O " sin "°l - c" ab b a L
i [(u; .v.'..,')_x +_un,..,,L_(.r.u)..,_+ _ )) ]

"C" aZb 2" b* a a

(c-15)
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an4 since q_ = (u° o oeV 2 ,W 2 }=

- d_2 _ . v, tan6cosB . X_K_/_S_ia_u; : u, ( [c" ab_c 2 aZbc 2 J

_2 . 26 2v;= v,-(.) [_. _s__ . V, tlna6COS8sinSasbs _ ]

(c- 16)

(C-17)

w; = wa-(d_)2[_____) . VLt%n_6 cos ssins. __Ltan26 sins] (C- 18)• a2bc 2 aab _ a_b 2 ,

where d is from Equation B-12. Finally,

u°u, I_[21 Iq'21 u ° _)]_ (C-19)= - i-_,l [ (I- _2

mid

m' and likewise,

v: : _ I _1 and w2 : Iq:l •
(C-20,21)

The crossflow stagnation points are locate_ at the

points where qc : 0. The derivation for the radial and

ctossflow velocity components are nov presented.

From Figure 1, it can be seen that:
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R = (x,y,z)
(C- 22)

wh_.re I is from Equation B-6 and
N

-- _" = (x.,/.z}
[_'1 Ix'+y2+z21% (C-23)

so that,

A A

(C-2_)

where d is from Equation B-9 and

D = (*' • y' • z')% (C- 25)

From Figure I, it can be seen that:

t_ct = ¢' • ic (c-2s)
and

I I = q • (C-27)

However, since numerical computation is again performed on

the computational polar system, the transformation equations,

Equations A-I, A-_, A-fi and A-6, must be applie| to Sq_tlons

C-26 and C-27. Carrying out the indlcate4 operations, Zqua-
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tion C-26 becomes:

t an6[ u (g -a 2) t an 6co_ s £n_. v.|a'+c z)s in_+w (_, +c z)cos_ ]
arab3 a2b= z ab 2 c 2

a z b z c_ a2b 2 - b 2 + a 2

(C-28)

and Equation C-27 becomes:

u + tan6 (vcosB + wsinJ_ )

IgRl : _ b. • {C-29)
['I + tanm6(cos2=__..__+ sin2_)])

a2 bz

°o
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APPENDIX D: EIGENVAI.UES

The matrix form of _'he governing partial differential

equations of fluid flow in the Zartesiln syst.=M is written

as:

~ _ ~_ • , c¢ : 0 . (D-l)
6 B

HoweveL-, to acquire a form ametlable to the MacCormazk second

order predictor-coLrectgr technique i. the computational

polar system, Equation D-I must be revr£ttell into the form:

, (D-2)

where A, k, B, B, C and C are nxn matt -'_..=s, n beinq the order

-T
of the system, and u = (u,v,v,P,p).

To derive Equation D-2, transformltions must be made

from the Cartesian system to the computational polar system

using the chain rule an,_ the tcansformltion Equations A-I,

A-4, A-5 and A-6. In this eanser, r.quation D-2 becomes:

• [aA"_'O,. + bA"_'Oz,]_ : 0

(D-3)

vhe re



j,_:__:._,_..,:_ .. _ • " _.._.._.i:_ ..:.

6]

and

N

k = A

~ b_ BC = aBBv" + z' "

(D--_)

Now the matrices A-nB " and A-IB must be found.

tial differential equations of fluid flow:

The par-

X-;iomentum: (P • Ou= )x + (DUV)y + (¢UW)z = O (D-s)

Y-Momentum: (0,1V)x + (p + pv2)v + (l_VW)z : 0 (u-6)

z-Momentum: (0uw) x + (0vw)y + (P + pW=) z : 0 (D-7)

q. (vp - _-=v_p} = 0Energy: (D-8)

Continuity: v,(p_) = 0 , (D-9)

_P
where from Kutl#r (1_), ca = (_)1 s , yield the m_t_ices _,

B and C. The desired quantities are then obtained as:

J
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-2u _

2 -II 2

o

0

2
C

1

C 2
-UV

1

IJ

0

0

0

o o v_
tl

0

0

I

0

I

tl

o _(J' - 1-uZ )

V

I

pu

0

0

(D-tO)
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_5

N

-UV 0 c2 w

c2 -u 2 c_ -u 2 p (=2-u2)

0 w O. 0

U

0 0 w I

U U

C 2
2

pv 0 -u_ - uw
c2 -U2 Ce -U2 =2- u 2

0 --_u -w wc 2 u(cZ_uz) u

0

0

0 (D-12)

0

utilizing Equations A-I, A-_, A-5 and A-6, Equations D-_ can

be. rewritten as:

B = - I__cos6sin6 + A _"B cos'6cos_ • b A_ zosa6sin_

C = -_a A"I B' cot6sin_ • _b A' C' cot6 COS8

(D- 1])

The eigenvalues, an.l event_,all¥ th_ linear _tability

bounds, are found by sol_ing the chara:t__ristic _.qu_tions:

4et ( B -cI ) = 0

det( C - kI ) = 0

(P-_)

(D-15)
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and obtaining the characteristic roots.

values are:

The resulting eiqen-

o = -cos6sin6+ cosZ6 (avcos8 + b_sinB)

',=,' _ u_
(D- 16)

P

= |-[(avcos8 + bwsirB) ucos6 + sin6]
L (c-T:qr)

+ { [(avcos 8 + bwsin_) uc_s6 + sin6 ]2
- (c'-_')

-sin*5 -2[avco-_S + bwsi_)ucos6sin6

(c2 -u ,)

and

• (avco-_ 6 • bwsivB)z cosZ6

(c'-_')

- (a' cos= s •
b'sin" 8 )c'co_6(c__ %]cos_6

(D- 17)

x = (bwcosS -
#l |l 3

_, = [(avsi. 8 -

avsi.S )c_c__/L_
u_

bwcosl_) U

(c'-u')

(D- 18)

+ {(avsin8 - bwcos_) = u
(c '- u= )

+(avsin_ - bwco_l' 1 ,
(c = -u')

-(a'sin'l_ + b'cos*_l (c'C'-az)]_Jc'_t-_
(p- tq)
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APPENDIX E: NONDI_ENSIONALIZATION AND INITT_L CONDITIONS

Nondilensionalization

The dimensional flow variables ), ), _, _ and _ are

no.dimensionalized to P, p, u, v and w a3 follows:

P : _ (E-I)

_-T®T

{E-2)

qp

r

since

LI#V, W = UmVtW •

[-_-]

(E- ],4,5)

Initial Cond _t ions

From NAC& B-113_ (15) ;

11 + (Y-__l) l_]2

(_-7)

=>

1
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APPENDIX F" INVERSION

From Appendix A, Equation &-11, define:

Zo = _pu (F-I)

E2 = _(P + pu a) (F-2)

P--3- _puv (F-3)

E4 = _puw . (F-it,)

th_n the flow vaciables can be found as:

v = z, (F-_)
E,

E, (y+ 1)
7

(V-7)

p = _-._t (F-8)
u._

P : ._ - pu' . (I,-9)

Tho (+) sign in Equation F-7 is used becsuse the flow L_

superson£c.
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Abstract

Second- and third-order finite difference methods recently applied

to problems in high speed fluid flow are applied to the model advection

equation cast in ccnservative form. The differencing methods considered

use forward time differencing with preferential space differences em-

ployed in the predictor-corrector sequences. The free parameter required

for stability in the third-order method is adjusted to cause the solution

to be either minimum dispersive or minimum dissipative in nature. Results

indicate that the third-order method using minimum dissipation is the

most accurate method tested. Computer time requirements are approximately

twice those needed for second-order techniques.
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I. Introduction

." .i

Numerical integrat ion of the equations describing atmospheric

notion has become commonplace since the advent of the high-speed digital

computer. Techniques used in performing this integration have varied

widely in order of accuracy, programming ease and computation time

required. This paper deals with application of recently developed

second- and thlrd-order techniques to the advection process using the

differential equations describing advection in conservative form.

The accuracy with which a finite difference method models advec-

tlon within the atmosphere is difficult to assess since the governing

equations are extremely nonlinear. Molenkamp (1968) has suggested that

representatlve numerical methods be applied to a simple problem whose

exact solution is known in order to compare the results obtained through

the use of each technique. The results of his investigation show that

higher order numerical methods more accurately model the advection pro-

cess. Holenkamp concludss that of the methods tested, the Roberts and

Weiss (1966) technique most nearly approximates the exact solution.

This method is fourth-order in space and _econd-order in time. The dis-

advantage lles in the fact that it requires at least one more order of

magnitude in computing time and conslderably more storage space than,

for example, a Lax-Wendroff second-order scheme.

Crowley (196_) has performed a slmilar analysis including a compari-

son of the accuracy of solutions obtslned us_:ng advectlve form and conser-

vatlve form o_ the describing equations. These results were obtained

for longer integratlo_ times but generally 4grea with those of Molenkamp.
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In addition, Crowley concludes that the conservative form of the governing

equation is preferred over the advective form.

The test problem which Crowley and Molenkamp have used assumes that

advectlon of a quantity A is governed by the differential equation

bA bA bA

where u and v are the velocity components in the x and y directions

and t is the time. This equation can be put in conservative form if

the divergence of the velocity vanishes as

bu by

The nonhomogeneous terms vanish and the conservative form of (I) becomes

0 . (3)
:

The conservative form (3) and the advectlve form (I) describe the same

physical phenomena (assuming Div _ = 0) and should provide the same

solutlon for a given set of initial data. Since numerlcal solutions

are obtained on e finite grid, the solutions to (I) and (3) are different

except in _he llm£tlng case as _t, _x and Ay approach zero.

A particularly slmple model of the advectlon process can be studied

when the velocity field is prescribed and due to a rigid body rotatfon

of angular velocity _ about some axis. In this case, the advectlve

forms my be written in polar coordinates er

+ _ _ = 0 (4)
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where B is the angular coordinate. This is just the simple one-dimen-

sional wave equation which has the solution

A(r O, t) = A (r, 0 - St)
' O

(5) '

where r is the polar radius measured from the axis of rotation and Ao is

the initial distribution of A. The initial distribution is rotated

through angle _t. This is the correct solution to either the advective

form or the conservative form of the governing equation,

Application of numerical differencing methods to this simple problem

provides a rough comparison of the usefulness of the methods in modeling

the advection process. Unfortunately, the velocity field usually depends

upon t and is coupled complexly to the advected quantity A in the real

problem. However_ by solving the numerical problem in s rectangular

coordln$:e system, some of the nonlinear character of the orlglnal

problem is retained.

In the folloeing sections, several numerical techniques are reviewed

which have been applied to high speed gas dynamic and aerodynamic problems

vlth great success. Phase error and amplltude plots are constructed and

the methods are applied to the conservative for_ of the _dvection equation.

The results obtained are compared wlth those of Molenkamp and Crowley.

2. DifferencJn 8 Methods

The numerical techniques used In this study have been developed for

hyperbollc systems of the form:

+ = 0 (6)



where E and F may be N component vectors and x may be of arbitrary dimen-

sion. The techniques are based upon the Runge-KutCa method and are

explicit in advancing the solution forward in time.

MacCormack's Method MacCormack (1969) developed a noncentered secono-

order method which has been used extensively in solving gas dynamic

problems involving strong shock waves. This technique consists of a

two-step predlctor.corrector sequence of the form

_j+l n _T - cA)AF_-Ej -_ (I

En+l I [E_ _j+l] i AT A_j+Ij -_ + - _-_ (l + c_)

(7)

(8)

D

i#

t i

where the tilde represents values at the intermediate step and

AFj , Fj+ I - Fj

VFj = Fj - Fj. I .

(9)

The value of ¢ can be either 0 or I. If ¢ = O, the predictor uses a

forward difference and the corrector uses a backward difference on Fj.

If ¢ = I, the differencing in the predictor and corrector are reversed.

This method was derived using staggered differencing with the con-

stralnt that both left and right moving waves oc properly computed.

In sddlti_n, the method satisfies the perfect shift condition. If the

simnie _ne-dlmensional wave equation is considered

+ - o (to)
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a solution may be written

u(x, t) = u(x • cat, t) . (It)

cat
If _ = A"_' then it follows that

u(x, t) = u(x - pax, t) . (IIA)

For a finite difference mesh the perfect shift condition

n+l n

uj = uj+m v : _+n,, m = I, 2, ... (12)

is satisfied where V is the Courant number.

MacCormack's method car be viewed as a version of the Lax-Wandroff

method. The use of noncentered differences is advantageous since only

values on the mesh points need be computed. This eliminates difficul-

ties encountered in storage shifting and results in a considerable

reduction in computer time. Kutler, homax and Warming have recently

extended this method so the predictor can be evaluated at any fractional

time step. Only values at (n + 1)At were used in this study.

l_cCormack's method is readily extended to two-space dimensions and

when applied to (3) becomes:

_n+l h AT [( uA n .i,J = Ai,J " _ 1 - Cx)( )i+l,J (l - 2¢x)(UA)_, j

(13)
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An+l i [An ._n+l]
i,j = _ Li,j + Ai,jJ I{AT [c×(_A,,.+l_x i+l,j + (i - 2cx)(uA)i, j

+ (c
x _'..n+l ] AT [¢y_A)n+l- l)(uA)i-l,j + _z i,j+l

+ (i _ 2¢ ).-_ )n+l n+l ]}_' _ i,j-I + (Cy - l)_A)i,j. 1 (13A)

Since the ¢ parameter can change in both the x and y direction, a ques-

tion arises in selecting the best values of the o's to use. MacCormack

(1971) suggests that the values of c x and Cy be cyclically permuted to

obtain results which are spatially unbiased. The allowable values of

the o's are:

Cx _ I Cy = I

cx = 1 Cy = 1

Ex = 0 Ey -- I

ex = 0 ¢y = 0 .

(14)

i. ' Only values Cx = ¢y = 0 were used in this study. That is only forward

predlction-backward correction was investigated.

."._ The stability of this method was investigated in detail by MacCormack

i and his results show that stability is assured if

i 1 (15)

).

where M is the Courant number given by

and {7 represents the eisenvalues of th_ Jacobian matrix _F/_E which

arises in the stability analysis of (6). The stability bound is derived
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by noting that the absol,_te value of the eigenvalues of the amplifioa-

tion matrix must be less than one where the eigenvalues cf the matrix

are given by

_A = I - iv sin B - V2(I - cos B). (15)

In the application of this method to the one-dimensional wave Eq. (i0),

the amplification factor of the scalar difference operator is given by

(16) where the Courant number is written as cAT/Ax.

It Is instructive to consider the phase angle and amplitude of the

one-dlmensional amplification factor

= I - iv sin e - p2(l - cos e) •

The magnitude is given by

mp

j

= [1 - v2(1 - ,.,2)<1- cos o)2:]I/2 (17)

and the phaae is given by

As noted by Crowley (1968), the relative error in amplitude is given

by I - [_[ and the relative phase error Is 1 - ¢_/OVwhen the solution

is advanced in time. Figure 1 presents contour plots of constant I_I

for values of p and the reduced frequency 8/_. The contours shown in

Fig. 2 are lines of constant - ¢191/. These plots sho_ that both phase

and amplitude errors In_'rease with e/_ for a given value of V. The

amplitude error is small at tow values of V. The amplitude error is

_ small again at large values of V. The phase error does Just the
: _

I
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opposite. The amplification factor and the plots of amplitude and phase

angle are the same as were presented for the Lax-Wendroff method by

Crowley. _te amplification factor for these two methods is identical.

Rusanov's Method Rusanov (1970) and Burstein and Mirin (1970) simul-

taneously developed a third-order scheme based on application of the

Runge-Kutta method. Due to its recent development,'this technique has

not been as extensively applied to fluid flow problems as MacCormack's

method. Taylor, Ndefv and Masson (1972) and Anderson and Vogel (1971)

have presented comparative solutions using both Rusanov's and MacCormack's

methods. They have concluded that the thlrd-order method possesses

greater flexibility in problems where larger variations in flow field

properties occur. It should be noted that the results of those inves-

tlgatlons were for shocked flows and represent relatively short compu-

tation times with large changes in the flow field dependent variables.

thlrd-order Rusanov method applied to :he hyperbolic Eq. (6)

is

J+l/2 = _ J+l + j " 3A---_ J+l " F

z_z) n. _ _T /_(I)

En+i n 3

- J+2 + 7rj+l -J-I -

R n n
(19)



This third-order method was developed using centered differences. The

perfect shift condition is also satisfied for a Courant number of one

and the proper choice of the _ parameter. The omega term in the third

step is a fourth-order difference required for stability. Since it is

fourth-order, the third-order accuracy of the method is unaffected by

its addition.

The stability analysis of this technique has been carried out

in detail by Burstein and Mirin (1970). Their results _how that the

stability of the system is assured if

IVi <I

l

and

4V 2 - V4 _ _ 3 (20)

The application of the Rusanov method to the linear Eq. (I0) produces

the amplification factor of the scalar difference operator which is

2

_ = 1 " 2M- sin2 8 _ sin4 _2

2

Contour plots of phase and amplitude are presented in Figs. 3 and 4.

An additional difficulty arises in presenting this data since the factor

appears as a parameter free to take on values within the stability

bounds 81ven in (20). The only possible contours that can be constructed

and i_'terpreted are those for which w = 3. The lower bound on W pre-

dicted by linear thoery depends upon the Courant number. As a result,

the curves for any value of W less than 3 would violate the etabillty
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bound over some range of IV I . Figure 3 presents _he constant magvitude

contours for I gl" In contrast to the second-order method, the largest

damping occurs at mtdrange values of wave number while at both high and

low wave numbers relatively little damping occurs. In comparing che

second and third-order amplitude contours, it appears that little is

gained by using the higher order. The phase error contours show an

improvement.

These results are better understood if the modified equation pco-

duced by applying each method to the wave gq. (10) is examined. Applica-

tion of gacCormack's method to the linear wave equation r+._3ults in the

modified Eq.

_u ci_u 1 cAx 2(I U2 b3u
_-"_ +---_ = - _- - ) -- + .. (22)

8x 3

while the Rusanov equation becomes

]-B-'C"+ _ = " _ Ax3 - 4b, + U3 B4u

5 " "1 _Su. c_._. cAx4 t0- 4 - 15U 2 + ,uJ.--'_' +120 . "'"
Ox

(23)

Kutler, homax and Warming observed that the lowest order term is the

modified equ&tion representing dispersion or phase error was a third

derivative term in the _econd-order case while in the thirdoorder method,

the lowest order dispersive term is a fifth derivative. For both methods

the lowest order even, or dissipative, term is a fourth derivative. One

might expect that Improvements in moving to the third-order technique

should result from a decrease in phase error. ThfJ conclusion was

verified by gutler, Lomax and Warming (1972) for shocked flows.
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Application to the case ol non-shocked flows is discussed in a later

section.

The Kutler-Lomax-Warming Method Kutler, Lo_x an(! Wamning (1972)

have developed a noncentered version of the Rusanov scheme. There are

two nuaJor differences between their technique and the original t_ird-

order Rusanov method.

The K-L-W method uses n_ncentered differences and uses the MacCormack

method (evaluated at 2/3AT) for the first two steps while the Rusanov

third level is ,tsed. This results in less computer storage and compu-

tation time since only values at each mesh point are required. The

other difference is that the fourth-order _ term has been differenced

in a conservative manner so that the value of _ can be altered during

the calculations. I£ the _ term is dllferenced as in the Rusanov method

and altered during computation, incorrect wave speeds occur in the numer-

ical solution.

Thl_ K-L-W method applied to the wave Eq. (6) takes the form

" Zj " _ _X [(l - ¢)Fj+l (l - 2¢)'; - CFj.Z]

-J_n+l= Ejm [Ej+ 2 3E j+ I + . n

n

n n n

" 2"4"A"_ 2Fj+2 + 7Fj+I " 7F -I + 2F -2

J-lJ "
(24)
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The form of this method applied to the two dimensio.ial sample problem

reads :

A(1) An 2 AT It n
.... [,uA) i+l,ji,j i,j 3 hx - (uA) n ] 2 AT [(vA)ni,j 3 Ay i,j+l

i,J 2 ,j i,j - 3 a-'x" "i j ].-l,j 2 A'r [(vA)(1). (vA)(1) _t3 ny i,j i,j-I

(W)n

An+l n x i41/2,i [An n n ]
i,j = Ai,j " 24 [ i+2,j " 3Ai+l,j +, 3Anl,j - Ai-_,j.j

- 3A". + 3A9
z,j _-l,j

(%)n
+ --i" i___._ ["An

[ i+t j24

+

%)ia-,+t,,2[_An _ +_.n + +_..
,j+2 t,j+l l,j

-3An,j + 3A_,j_ I

(%)n

i.i-1/2 [A_24 ,i+l
_ A n

i,J-2]

" 2-_ _x 2(uA [+2,J + 7(uA)_+l, j + 2 (m%)n.z,j ]

++

- . . ',

, ." +a

. • _

i"" ?

::. _ "" " l_

;:. :J
? +.t

t2 •

i+ " .

•6 2(vA)?,J+2L + 7(vA)ni,J+l ° ° ]I7(vA).[,j_ I + 2(vA)i,j_ 2

8 uh)t+l, J

wi_re functionally

(2) _ AT [(vA)[2)" (t_)i-l,JJ +_ ,]+l ...)(2) t]}[VA i,j-

(25)

. PC ]
i+l/2,J [ t+l/2,J

(26)
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and

)n 1 _k )n + (kx)n + (k)n + (k)n ] At(Vx i+l/2,j = _ x i+2,j i+l,j x i,j x i-l,j _xx

i,j+i/2 L y i,j+2
+ (ky) n

i,j+l

+ (l)n

Y i,j
+ CXy>

,j-t

(27)

This method has the same stability bounds and magnitude as the

Rusanov method and phase angle plots shown in Figs. 3 and 4 for Rusanov's

method are applicable.

gutler, Lomax and Warming observed that this third-order method

usually produced better results in problems involving large changes in

the dependent variables than did second-order techniques. However,

some sensitivity of the results to variations in the local eigenvalue

structure led them to attempt to "tune" the method at each step by

changing the value of the W parameter.

Application of the K-L-W method to the simple wave Eq. (I0) results

in the modified differential Eq. (23) common to thlrd-order Runge-Kutta

methods. To reduce the dissipation of the method, the _ parameter should

If the coefficient

which is lower stability bound as predicted by linear theory. If

the coefficient of the fifth-order term

(29)

minimum dispersion is desired,

is sat equal to zero giving

. .+ .

w - 4P 2 - 4 (28)

be selected to minimize the fourth derivative term.

of this term is set equal to zero then
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Results presented by Kutler, Lomax and Warming (1972) show that an im-

provement in the solution is achieved if _ is altered according to

either of these schemes. It should be noted that the value of V appearing

in (28) and (29) is the local value of the Courant number. The _ and

_y of (26) are thus determined through (28) and (29) with the appropriate

values of V given in (27).

The amplitude and phase error contour plots for the variable _cases

are presented in Figs. 5 through 8. The minimum dissipation amplitude

plot in Fig. 5 shows that the "tuned" third-order method is less dissi-

pative than the second-order technique. The effect of changing _ to

eliminate the first even term in the modified equation clearly reduces

the damping. This should be compared with Fig. 7 which is also an ampli-

tude contour plot but for minimum phase error as provided with _ deter-

mined through (26). It is apparent that the damping is greater in this

case but only below Courant numbers of about 0.6. This should have

been anticipated since the allowable range of _is restricted at higher

Courant numbers and the method becomes less sensitive to the value of W

used.

The phase angle contours show that the minimum dispersion case in

Fig. 8 provides a smaller phase error over the entire range of stable

values of V than the minimum dissipation case shown in Fig. 6. On the

basis of the amplitude and phase angle plots one would expect results

using the "tuned" K-L-W method to be superior to the constant _ third-

order methods. Application to a problem Justifying this conclusion is

presented in the following section.

• v
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3. Numerical Calculations

/.

" _

A simple velocity field is prescribed over a coordinate mesh if

it is assumed that it is produced by 3slid body rotation about some axis.

In th_s case the divergence of the velocity field is zero and the con-

sf_vatlve form given in (3) is valid. The initial distribution of A is

chosen to be a cone of unit altitude at the center decreasing to zero

at the base r_dius of four ce_l widths. The following data were held

constant during the calculations unless otherwise noted:

n = number of time steps = 40

O = rigid body angular velocity = - .001 radians/sec

_t = ti_e step _ 30 seconds

Ax = Ay = _ = 1.0 = mesh size

Center of rotation (12, 12)

Center of initial A distribution (18, 12).

A schematic representation of this problem is shown in Fig° 9.

Figure _0 presents the results of using MacCormack's method with

a forward predictor, backward corrector while the results obtained with

a backward predictor, forward corrector sre shown in Fig. 11. The results

in both cases are slmilar in terms of corr_tly advectlng the center o_

the disturbance and in reproducing contours _f co_tstant A. The results

are very similar to thme produced using the Lax-Wendroff method as

reported by Fattahl (1971).

The Rusanov thlrdoordcr method using W = 3 was applied to this prob-

Lem and the results are shown in Fig. 12. These results are not very

encouraging. _owever, a more detailed analysis of the situation produces

some Lmportan_ information. The Rusar,>v method has been showu to produce
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results which are unfavorable when the Courant number is not close to

one and the upper limit value of 3 is used for O._ In this problem the

mesh ratio is AT/A = 30 which gives an effective Courant number of

approximately 0.35 based on the maximum ve!ecity. This means that the

local Courant number at each point in the mesh is less than or equal to

0.35. Referring to Figs. 3 and 4, the ,_ost dissipative and dispersive

regions of the Rusanov method lie in this range. This is t_,_ re_son for

the poor results shown in Fig. 12. It is interesting to note that the

MacCormack method provides a better solution fo_ this case th:m the

third-order Rusanov technique. Figs. I and 2 show that less dissipation

and dispersion are introduced in the solution using the MacCormack method

for the rmnge of effective Courant numbers encountered in this nun_rica!

example. For this case the minimum value of _ for stability required

by the Rusanov method is approximately 0.5 while the maximum value is 3.

Calculations using values of _ near the lower bound have resultad in

good solutlons for problems involving shocked flows like those of Kutler,

Lomax and Warming (1372) a,_ a16o fcr the ,_amole problem presented here

by Bursteln and Mirin (1970) and Fattahl. Values of _ near or below

the linear stability bound result in excellent solutions for shocked

flows. Fattahi (1971) reports a similar conclusion and, in solving

the exact problem as presented here, notes thatanwvalue of about O.b

produces the best results. This Is shown in Fig. 13. Solutlone obtained

with _below the linear stability bound provide excellent results for

short integration times. For long integration times the solution

eventually becomes unstable if a value of _ outside the allowed range

is used.
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The preblem of selecting the proper value of _ is alleviated if

the Kutler-Lomax-Wa_ing technique with either minimum dispersion or

dissipation is used. Figures 14 and 15 present the results of these

calculetions for a time step of AT = 30 seconds. The minimum dissipation

case provides better results at this value of AT. Referring to the am-

plitude contours for these two methods reveals that the damping is

severe for the minimum dispersion case at low Courant numbers. This is

apparent if the maximum advected value is compared for these two cases.

This type of problem is evidently more sensitive to dissipative errors

than errors in phase angle. Kutler, Lomax and Warming (1972) concluded

that the minimum dispersion provided better results for their work

involving shocked flows. The difference in the results using the two ways

of calculating _ diminishes as the linear stability bound is approached.

Solutions for a time step of AT = 75 sec are shown in Figs. 16 and 17. As

5;

noted from the damping and phase error curves, the results obtained should

be similar. However, the minimum dissipation solution still appears to

be more satisfactory.

4. Conclusions

A comparison of relative errors and computation times are presented

in Table 1. Based on accuracy in terms of maximum advected v_ue, phase

error and error in the radius of the center location, the third-order

methods are usually better unless relatively low values of Courant

number are coupled with large values of 00. The third-order methods

require the same magnitude of computer time as MacCormack's method.

They are still an order of magnitude faster than the fourth-order space,
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second-order time Rob_,rts and Weiss method. Alth_gi_ ti:is techniqu ._ was

not investigated here, Molenkamp ([q6_ has report_,d tlle relative t_me

required for its use.

Of the methods tested, the Kut[er-Lomax-Warming met_od tLlned for

minimum dissipation provides the best comparison with the exact solu-

tion. This method should be studied in more detai[. In particular

resLllts using the various combinations of the £'s defined in (14)

should be compared. The results reported here used a forward predictor

and backward corrector to advance to 2/3AT and central differencing in

the third step. In addition, application should be made to more com-

plex problems to assess the usefulness of the technique of altering

the stability parameter _ during the computation. While the eigen-

value structure required in choosing the proper _ in a complex problem

is ulfficu!t, reasonable approximations can be made. The increase in

accuracy of the resulting solution far outweighs the additional effort.
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Fig. I.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

Constant I_I contour for MacCormack's second order method.

Contour of - _I_ for MacCormack's second order method.

Constant I_I contours for Rusanov Method with _ = 3.0.

Phase angle for Rusanov _,_thod wlth _ = 3.0.

Constant I_I contours for K-LoW Method for minimum disslpat_on.

Relative phase error for the K-L-W Method tuned for minimum

dissipation.

Constant I_I contours for the K-L-W Method with minimum

dispersion.

Fig. 8. Contours of - _/_ for K°L-W Method with minimum dispersion.

Fig. 9. Schematic representation of the advection problem showing

the initial A distribution.

Fig. !0. Sclutlon using the MacCormack (forward predictor, backward

corrector) Method.

Fig. II. Solution ualng the MacCormack (forward predictor, backward

corrector) Method.

Fig. 12. Solution using Rusanov's Method with W = 3.0.

Fig. 13. Solution using the Rusanov-Bursteln-Mirln Method, W = 0.6,

AT = 30.

Fig. 14. Solution using the K-L-W Method tuned for minimum dlsslpatlon
AT = 30 see.

Fig. 15. Solution using the K-L-W Method tuned for _Inlmum dispersion
AT = 30 sac.

Fig. 16. Solution using the K-L-W Method tuned for minimum dissipation

_T - 75 sec.

Fig. 17. Solution using the K-L-W Method tuned for minimum dispersion
_T - 7_ sac.
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